Elevated glucose inhibits VEGF-A–mediated endocardial cushion formation
نویسندگان
چکیده
Atrioventricular (AV) septal defects resulting from aberrant endocardial cushion (EC) formation are observed at increased rates in infants of diabetic mothers. EC formation occurs via an epithelial-mesenchymal transformation (EMT), involving transformation of endocardial cells into mesenchymal cells, migration, and invasion into extracellular matrix. Here, we report that elevated glucose inhibits EMT by reducing myocardial vascular endothelial growth factor A (VEGF-A). This effect is reversed with exogenous recombinant mouse VEGF-A165, whereas addition of soluble VEGF receptor-1 blocks EMT. We show that disruption of EMT is associated with persistence of platelet endothelial cell adhesion molecule-1 (PECAM-1) and decreased matrix metalloproteinase-2 (MMP-2) expression. These findings correlate with retention of a nontransformed endocardial sheet and lack of invasion. The MMP inhibitor GM6001 blocks invasion, whereas explants from PECAM-1 deficient mice exhibit MMP-2 induction and normal EMT in high glucose. PECAM-1-negative endothelial cells are highly motile and express more MMP-2 than do PECAM-1-positive endothelial cells. During EMT, loss of PECAM-1 similarly promotes single cell motility and MMP-2 expression. Our findings suggest that high glucose-induced inhibition of AV cushion morphogenesis results from decreased myocardial VEGF-A expression and is, in part, mediated by persistent endocardial cell PECAM-1 expression and failure to up-regulate MMP-2 expression.
منابع مشابه
Elevated glucose inhibits VEGF-A–mediated endocardial cushion formation: modulation by PECAM-1 and MMP-2
trioventricular (AV) septal defects resulting from aberrant endocardial cushion (EC) formation are observed at increased rates in infants of diabetic mothers. EC formation occurs via an epithelial-mesenchymal transformation (EMT), involving transformation of endocardial cells into mesenchymal cells, migration, and invasion into extracellular matrix. Here, we report that elevated glucose inhibit...
متن کاملMicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production.
RATIONALE Since their discovery almost 20 years ago, microRNAs have been shown to perform essential roles during tissue development and disease. Although roles for microRNAs in the myocardium during embryo development and cardiac disease have been demonstrated, very little is know about their role in the endocardium or during cardiac valve formation. OBJECTIVE To study the role of microRNAs i...
متن کاملEctopic Noggin in a Population of Nfatc1 Lineage Endocardial Progenitors Induces Embryonic Lethality
The initial heart is composed of a myocardial tube lined by endocardial cells. The TGFβ superfamily is known to play an important role, as BMPs from the myocardium signal to the overlying endocardium to create an environment for EMT. Subsequently, BMP and TGFβ signaling pathways synergize to form primitive valves and regulate myocardial growth. In this study, we investigated the requirement of ...
متن کاملBone morphogenetic protein receptor 1A signaling is dispensable for hematopoietic development but essential for vessel and atrioventricular endocardial cushion formation.
Bone morphogenetic protein 4 (BMP4) is crucial for the formation of FLK1-expressing (FLK1(+)) mesodermal cells. To further define the requirement for BMP signaling in the differentiation of blood, endothelial and smooth muscle cells from FLK1(+) mesoderm, we inactivated Alk3 (Bmpr1a) in FLK1(+) cells by crossing Alk3(floxed/floxed) and Flk1(+/Cre)Alk3(+/floxed) mice. Alk3 conditional knockout (...
متن کاملTbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis.
Cardiac valves are essential to direct forward blood flow through the cardiac chambers efficiently. Congenital valvular defects are prevalent among newborns and can cause an immediate threat to survival as well as long-term morbidity. Valve leaflet formation is a rigorously programmed process consisting of endocardial epithelial-mesenchymal transformation (EMT), mesenchymal cell proliferation, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 160 شماره
صفحات -
تاریخ انتشار 2003